Abstract

Background3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenvironment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them.MethodsIn this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay.ResultsAtomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures.ConclusionsTaken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.

Highlights

  • 3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3Dmicroenvironment being important in determining the fate of the embedded cells

  • Matrix assembly was analysed by performing atomic force microscopy to provide structural information about the matrix, such as spatial dimensions of the fibres and the structure of the network formed by these fibres

  • Atomic force microscope (AFM) images provide structural information in three dimensions which allowed us to measure the spatial dimensions of the fibres as well as the structure of the network formed by these fibres (Figure 1B)

Read more

Summary

Introduction

3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3Dmicroenvironment being important in determining the fate of the embedded cells. Concentration and functionalisation of the 3D-scaffolds is essential for cell adhesion, growth and differentiation, we varied the concentration and functionalisation of PuraMatrix seeded with a human neural progenitor cell line (ReNcell VM, Millipore, USA) and studied the effects on the assembly of the matrix, and subsequently the influence on the differentiation of the human progenitor cells. This cell line shows fast proliferation and can be cultured which makes it an appropriate system to test the influence of a 3D environment. The data presented provides new information for optimizing 3D-scaffolds to be used in die field of regenerative medicine

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call