Abstract

ObjectivesFibronectin (FN), an extracellular matrix (ECM) glycoprotein, is a key factor in the compatibility of dental implant materials. Our objective was to determine the optimal dimensions of microgrooves in the transmucosal part of a dental implant, for optimal absorption of plasma FN and expression of cellular FN by human gingival fibroblasts (HGFs). MethodsMicrogroove titanium surfaces were fabricated by photolithography with parallel grooves: 15μm, 30μm, or 60μm in width and 5μm or 10μm in depth. Smooth titanium surfaces were used as controls. Surface hydrophilicity, plasma FN adsorption and cellular FN expression by HGFs were measured for both microgroove and control samples. ResultsWe found that narrower and deeper microgrooves amplified surface hydrophobicity. A 15-μm wide microgroove was the most hydrophobic surface and a 60-μm wide microgroove was the most hydrophilic. The latter had more expression of cellular FN than any other surface, but less absorption of plasma FN than 15-μm wide microgrooves. Variation in microgroove depth did not appear to effect FN absorption or expression unless the groove was narrow (∼15 or 30μm). In those instances, the shallower depths resulted in greater expression of cellular FN. ConclusionsOur microgrooves improved expression of cellular FN, which functionally compensated for plasma FN. A microgroove width of 60μm and depth of 5 or 10μm appears to be optimal for the transmucosal part of the dental implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.