Abstract

The electronic structure of hexagonal TiO2 nanotubes doped with 3d transition metals from Sc to Zn was calculated by the linearized augmented cylindrical wave method. The calculated densities of states demonstrate that the substitution of Sc, V, Co, Cu, or Fe atoms for a part of Ti atoms leads to the decrease in the band gap width of the material from 4 to 2 eV. Such nanotubes are promising materials for creation of electrodes for electrochemical photolysis of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.