Abstract

Effects of 2-deoxy-D-glucose (2-DG) on DNA double strand break (dsb) repair, cell survival and on the energy metabolism were investigated in exponentially growing Ehrlich ascites tumour (EAT) cells. Cells in suspension were exposed to 40 Gy of X-rays and allowed to repair (up to 4 h) with or without 2-DG at 37 degrees C. DNA dsb rejoining was measured by means of clamped homogeneous electric field (CHEF), a pulsed field gel electrophoresis technique. The fraction of activity released (FAR) during electrophoresis (DNA associated 14C-thymidine) was used as a parameter to determine the number of dsb present in the DNA. Biphasic kinetics for dsb repair were observed. The presence of 2-DG significantly inhibited the slow component of dsb repair. The presence of 2-DG also enhanced radiation-induced cell killing. ATP content of cells was measured by a bioluminescence method. ATP content in exponentially growing cells was about 4 pg per cell. The level of ATP was reduced by 50% in presence of 2-DG (C2-DG/CG = 1.0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call