Abstract

Using Brassica napus roots we observed statistically significant increase in alternative respiratory pathway in response to exogenous 24-epibrassinolide (EBL) under optimal conditions and salinity. Also we observed activation of phospholipid signaling under the same conditions in response to EBL by measuring levels of lipid second messengers – diacylglycerol (DAG) and phosphatidic acid (PA). We found that brassinosteroids cause closure of stomata in isolated leaf disks while inhibitors of alternative oxidase cancelled these effects. This study demonstrates that BRs activate total respiration rate, alternative respiratory pathway, production of PA and DAG, stimulate stomata closure and growth under optimal conditions and salinity. Also, specific inhibitor of brassinosteroids biosynthesis decreased alternative respiratory pathway and production of lipid messengers in rape plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.