Abstract

ABSTRACTWhen hydrogen is dissolved, brittleness occurs in the material. However, in the case of titanium and titanium alloy, hydrogen can be temporarily dissolved and removed, thereby improving the mechanical properties of titanium and titanium alloy. In this study, Core time Hydrogen Heat treatment (CHH) applies to Ti–6Al–4V alloy to improve mechanical properties. CHH was performed at 800°C and 1000°C for 2 h. Thereafter, dehydrogenation was performed for 2 h at 700°C in vacuum atmosphere to remove residual hydrogen. After the CHH at 800°C, it was found that the α-lath size in the Ti–6Al–4V was narrowed; thereby increasing the Vickers hardness and tensile strength without decreasing in elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.