Abstract

The effects of the addition of β-glucan concentrate (2.5–10 g/100 g flour) and water (58–70 mL/100 g flour) on the rheological and textural properties of wheat flour doughs were studied. Various empirical (farinograph, extensograph, dough inflation, and dough stickiness) and fundamental rheological tests (oscillatory and creep-recovery) were employed to investigate composite dough structure and an attempt was made to correlate the data obtained from different instrumental measurements. The water absorption increased with the addition of β-glucan concentrate into wheat flour. An increase in mixing time and stability were recorded upon addition of β-glucan concentrate (≤ 5 g/100 g flour), and the extensibility decreased at similar condition. The composite dough exhibited predominating solid-like behavior. The mechanical strength, dough stickiness, the peak dough inflation pressure decreased with increasing water content but those parameters increased with β-glucan concentrate incorporation within the studied concentration range. Creep-recovery tests for 5 g β-glucan concentrate/100 g flour doughs recorded less resistance to deformation with an increase in water level and data were well described by the Burger model. Thermal scanning of doughs revealed that the protein denaturation peak was significantly influenced by water content, and the values were ranged between 110 and 124°C. Significant relationships between empirical and fundamental rheological testing methods were found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call