Abstract
A large amount of microplastics have entered conventional wastewater treatment plants, and their effects on activated sludge nitrification and denitrification are rarely reported. This study investigated the effects of microplastics on activated sludge nitrification and denitrification using five typical microplastics, namely, polyvinyl chloride (PVC), polypropylene, polyethylene, polystyrene, and polyester (PES) with concentrations of 0, 1000, 5000, and 10,000 particles/L. Results indicated that microplastics had negative effects on ammonia oxidation rate and low effect on nitrite oxidation rate during nitrification. The total inorganic nitrogen did not have much difference during 3 h nitrification under all the tested conditions. The addition of microplastics showed positive effects on denitrification, especially for PVC and PES at microplastic concentration of 5000 particles/L. Nitrification and denitrification did not evidently stop under all the tested conditions, indicating that the selected microplastic types and concentrations were not toxic to nitrification and denitrification within 3 h. The high abundance of PVC microplastics remarkably increased the nitrous oxide (N2O) emission during denitrification. The N2O emission in the test with 10,000 particle/L of PVC was 4.6times higher than the blank control. This study indicated that microplastics with <10,000 particle/L concentration in wastewater had low effects on nitrification and denitrification, whereas they had high effects on the N2O emission during denitrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.