Abstract

ObjectivesDevelopments in deep brain stimulation (DBS) technology have enabled the ability to detect local field potentials (LFPs) in Parkinson disease (PD). Gait dysfunction is one of the most prevalent deficits seen in PD. However, no consensus has been reached on the effect of gait on LFPs and the relationship between LFPs and clinical measures of gait. The objective of this systematic review was to synthesize existing research regarding the relationship between gait dysfunction and LFPs in PD. MethodsA systematic search of the literature yielded a total of ten articles, including 132 patients with PD, which met the criteria for inclusion. ResultsBeta frequency band measures showed low-to-strong correlation to clinical gait measures (r = −0.50 to 0.82). Two studies found decreased beta power during gait; one found increased beta frequency peaks during gait; and one found higher beta power during dual-task gait than during single-task gait. One of the three studies comparing patients with and without freezing found significantly increased beta burst duration and power during gait in freezers compared with nonfreezers. All studies showed moderate-to-high methodologic quality. ConclusionsThis review highlights the need to consider the effect of gait on LFP recordings, particularly when used to guide DBS programming. Although sample sizes were small, it appears LFPs are associated to and modulated by gait in patients with PD. This evidence suggests that LFPs have the potential to be used as a biomarker of gait dysfunction in PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call