Abstract

Objective: To investigate the effect and mechanism of microRNA-146a (miR-146a) on Toll-Like Receptor 4 (TLR4) inflammatory signal pathway in the lung tissues of rats with mechanical ventilator-induced lung injury. Methods: Thirty-two healthy male Sprague-Dawley rats were randomly divided into 4 groups (n=8 each): group A, normal control group, no mechanical ventilation, spontaneous breathing; group B, mechanical ventilation injury; group C, mechanical ventilation injury plus no-load virus transfection; group D, mechanical ventilation injury plus virus transfection; in group B, C, and D, mechanical ventilation were performed, respiratory rate was controlled at 80 beats/min, tidal volume was 40 ml/kg, inhaled oxygen concentration (FiO2) was 21%, inhalation/expiration ratio was 1∶2, positive end expiratory pressure ventilation (PEEP) was 0, each group were ventilated 4 hours daily, 7 days continuously to establish ventilator induced lung injury (VILI) rat model. Paraffin-embedded sections of lung tissue were stained with HE, the morphology and damage of lung tissue were observed under microscope. The lungs wet and dry ratio (W/D), the levels of inflammatory cytokines interleukin (IL)-1β, IL-2 and tumor necrosis factor (TNF)-α were determined. Real-time PCR was used to detect the expression of TLR4 mRNA. The level of TLR4 protein was determined by Western blot. Results: The levels of lung tissue W/D and lung injury scores in group B (6.41±0.10, 11.38±0.92), group C (6.45±0.19, 11.75±1.04), group D (5.95±0.14, 7.53±4.78) were significantly increased than those in group A (4.33±0.08, 0.25±0.46), and in group D they were significantly decreased than group C (all P<0.01). The levels of IL-1β, IL-2, TNF-α in group B[(36.07±4.28) pg/ml, (5.02±0.63) ng/ml, (382.57±35.41) ng/ml], group C[(35.82±5.47) pg/ml, (4.98±0.71) ng/ml, (375.13±36.95) ng/ml], group D[(27.01±3.18) pg/ml, (3.96±0.82) ng/ml, (297.56±39.08) ng/ml]were significantly increased than those in group A[(21.46±3.15) pg/ml, (2.45±0.17) ng/ml, (195.92±18.07) ng/ml], and in group D they were significantly decreased than group C (all P<0.01). The relative expression levels of TLR4 mRNA and TLR4 proteins in group B (29.57±5.10, 0.75±0.110), group C (27.27±4.72, 0.77±0.130), group D (12.89±2.58, 0.48±0.057) were significantly increased than those in group A (1.02±0.13, 0.18±0.025), and in group D they were significantly decreased than group C (all P<0.01). There was no significant difference of all the above indicators between group B and C (all P>0.05). Conclusions: MiR-146a can reduce acute lung inflammation and TLR4 expression in lungs of rats with mechanical ventilator-induced lung injury. MiR-146a may inhibit the inflammatory response through TLR4 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call