Abstract

To study the effect and mechanism of selenium sources on the selenium content and quality of fresh tea leaves, tea seedlings (Camellia sinensis (L.) O. Kuntze) were the research object. A solution of 100 mg/L sodium selenate (Na2SeO4), sodium selenite (Na2SeO3), and selenium yeast (selenium yeast) were applied on the leaves surface of 5-week-old tea plants, and the selenium levels in the leaves, roots, and stems were determined at 20 weeks of age. The effects of different selenium sources on the mineral nutrient content, antioxidant enzyme activity, and quality parameters content in leaves were analyzed. The mechanism was analyzed by detecting the expression levels of related genes. The results showed that the three selenium sources can increase the growth of tea seedlings and the selenium content in leaves and stems, and the selenium yeast treatment had the most significant effect. Selenium spraying promoted the absorption of mineral nutrients such as nitrogen, phosphorus, and potassium, but had no significant impact on the absorption of calcium and magnesium. Spraying the three selenium sources dramatically increased the activities of APX, POD, and SOD antioxidant enzymes, among which the selenium yeast treatment had the most significant effect. However, there was no significant impact on the MDA level in this study. Selenium sources markedly increased leaves total amino acid levels, accompanied by up-regulation the genes of amino acid synthetic enzymes (CsGS, CsGOGAT, and CsGDH). Leaves glucose, tea polyphenol, total soluble protein, catechin, flavonoid contents, and sucrose were higher in selenium sources treatments than in control treatment seedlings. Moreover, selenium sources up-regulated expression of CsHMGR, CsAPX, and CsTCS1 genes. selenium yeast had the best comprehensive effect of the three selenium sources. These results confirmed that selenium sources play a positive role on the selenium content and quality of tea by increasing the antioxidant capacity of leaves, the absorption rate of mineral nutrients, and regulating expression of related genes in Camellia sinensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call