Abstract

An inorganic ion functionalized biomimetic periosteum constitutes a new strategy for the design and application of new bone repair materials. However, the effect of cumulative concentration of inorganic ions (e.g. inorganic ion (Si4+)) on bone immune microenvironment in promoting bone repair is still unclear. Here, we used different mesoporous bioactive glass nanoparticles (MBGNs) contents and a methacrylic acid gelatin (GelMA) organic–inorganic double crosslinking techniques to construct low, medium, and high content inorganic ion biomimetic periosteum. As the inorganic ion concentration increased, the compression modulus of LM@G, MM@G, and HM@G (1, 3, and 5 wt% MBGNs, respectively) was 1.6, 3.2, and 2.1 times higher than that of the GelMA hydrogel and the Si4+ release was 35.4 ± 0.4, 59.5 ± 0.2, and 71.5 ± 1.2 ppm in vitro, respectively. The ERK1/2 and p65 inhibition in the HM@G was 51.9% and 40.2% higher than that in the LM@G; however, the stem cell recruitment was about 85.2% lower than that in the LM@G, and the vascular germination degree was 35.4% lower than that in the MM@G. Contradiction between immune regulation and bone repair was found. However, the anti-inflammation in the MM@G was 30.8%, 30.1% higher than that in the LM@G, and stem cell recruitment and vascular sprouting were 3.4 and 1.6 times higher, respectively than those in the HM@G. In summary, the anti-inflammatory effect of MM@G group is stronger than that of LM@G group, and the effect of stem cell recruitment is more significant than that of HM@G group. We not only explore the biological mechanism of Si4+ coordinating macrophages and stem cells to promote bone repair, but also provide research basis for designing inorganic ion based immunofunctional biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call