Abstract
As a kind of typical on-orbit capture and aberrance technology, space tether de-orbit system has broad application prospect in terms of cleaning space debris and abandoned satellites. In the paper, the attitude dynamics equations of the tether de-orbit system is established based on law of moment of momentum; Against the background of de-orbiting under a constant thrust in the tangential direction, the optimized PD control law with limited attitude feedback on jet control and momentum wheel control is designed for the mission satellite; The oscillation characteristics of the attitude of abandoned satellite are studied, and the effect of the oscillation on the tethered system and based satellite are analyzed; According to the demand for maintaining the position and suppressing the oscillation of the abandoned satellite, a kind of tension control method is put forward. Numerical simulation results indicate that the abandoned satellite oscillates at a specific angular frequency, and the large amplitude threatens the stabilization of tethered system; the designed tension control method effectively eliminate the oscillation of the abandoned satellite and ensure the flight safety of the tether de-orbit system, with economic energy consumption for the control of the based satellite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.