Abstract
Patterned laser illumination incident upon superconducting films is shown to be capable of creating dynamic superconducting-normal ($S\ensuremath{-}N$) interfaces with almost any desired pattern. The width of such a dynamic interface for a sharp illumination edge is shown to be the effective quasiparticle diffusion length. In the limit of strong phonon trapping in the film, the effective quasiparticle diffusion length approaches the thermal healing length obtained from the heat diffusion model. However, this is not the appropriate limit in general for thin films immersed in liquid helium. The ability to create dynamic $S\ensuremath{-}N$ patterns can be used in probing spatial inhomogeneity of superconducting films and tunnel junctions. An Al-${\mathrm{Al}}_{2}$${\mathrm{O}}_{3}$-Pb junction was used to demonstrate the technique. For the first time, the spatial distribution of tunneling probability was obtained through the measurements of local Josephson current. It is shown that this is a much more reliable technique than attempting to infer the tunneling probability from the excess quasiparticle tunneling current due to a local laser or electron beam excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.