Abstract

In this article, we present an approach for comprehensive analysis of the effectiveness of interventions based on nonlinear structural equation mixture models (NSEMM). We provide definitions of average and conditional effects and show how they can be computed. We extend the traditional moderated regression approach to include latent continous and discrete (mixture) variables as well as their higher order interactions, quadratic or more general nonlinear relationships. This new approach can be considered a combination of the recently proposed EffectLiteR approach and the NSEMM approach. A key advantage of this synthesis is that it gives applied researchers the opportunity to gain greater insight into the effectiveness of the intervention. For example, it makes it possible to consider structural equation models for situations where the treatment is noneffective for extreme values of a latent covariate but is effective for medium values, as we illustrate using an example from the educational sciences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.