Abstract

As a complementary imaging technology, coincidence imaging radar (CIR) achieves super-resolution in real aperture staring radar imagery via employing the temporal-spatial independent array detecting (TSIAD) signals. The characters of TSIAD signals are impacted by the array geometry and the imaging performance are influenced by the relative imaging position with respect to antennas array. In this paper, the effect of array geometry on CIR system is investigated in detail based on the judgment criteria of the effective rank theory. In course of analyzing of these influences, useful system design guidance about the array geometry is remarked for the CIR system. With the design guidance, the target images are reconstructed based on the Tikhonov regularization algorithm. Simulation results are presented to validate the whole analysis and the efficiency of the design guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.