Abstract

IntroductionMorphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. ObjectiveIn this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. DevelopmentRepeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. ConclusionsThe actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.