Abstract

In the present work, we use the complex-energy shell model formalism to describe the alpha decay of the 212Po nucleus. Single-particle bases constructed from Woods-Saxon potentials are used to build many-body basis. Spin-isospinGaussian effective interaction between all pairs of nucleons is considered. Four-body spectroscopic factor and single-particle width are calculated. The stability of the spectroscopic factor renormalization protocol is demonstrated, thus ensuring its physical significance, and its influence on the calculated alpha decay is presented. It is observed that the renormalization modifies the calculated half-life by∼40 %, which is a value three times larger than the experimental. Still, without appealing to any cluster structure from the beginning, i.e., all calculations were carried out using single nucleon degree of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.