Abstract

Dihydroartemisinin-piperaquine (DP) is highly effective for malaria chemoprevention during pregnancy, but the standard dosing of DP that is used for nonpregnant adults may not be optimal for pregnant women. We previously reported that the pharmacokinetic exposure of total piperaquine (PQ; both bound and unbound to plasma proteins) is reduced significantly in the context of pregnancy or efavirenz (EFV)-based antiretroviral therapy (ART). However, as PQ is >99% protein-bound, reduced protein binding during pregnancy may lead to an increase in the pharmacologically active unbound drug fraction (fu), relative to the total PQ. We investigated the impact of pregnancy and EFV use on the fu of PQ to inform the interpretation of pharmacokinetics. Plasma samples from 0 to 24 h after the third (final) DP dose were collected from pregnant women at 28 weeks gestation who were receiving or not receiving EFV-based ART as well as from women 34 to 54 weeks postpartum who were not receiving EFV-based ART, who served as controls. Unbound PQ was quantified via ultrafiltration and liquid chromatography-tandem mass spectrometry, with fu being calculated as PQunbound/PQtotal. The geometric mean fu did not differ between pregnant and postpartum women (P = 0.66), but it was 23% (P < 0.01) greater in pregnant women receiving EFV-based ART, compared to that in postpartum women who were not receiving EFV-based ART. The altered drug-protein binding, potentially due to the displacement of PQ from plasma proteins by EFV, resulted in only a 14% lower unbound PQ exposure (P = 0.13) in the presence of a 31% lower total PQ exposure (P < 0.01), as estimated by the area under the concentration time curve from 0 to 24 h post-last dose in pregnant women who were receiving EFV-based ART. The results suggest that the impact of pregnancy and EFV-based ART on the exposure and, in turn, the efficacy of PQ for malaria prevention may not be as significant as was suggested by the changes in the total PQ exposure. Further study during the terminal elimination phase (e.g., on day 28 post-dose) would help better characterize the unbound PQ exposure during the full dosing interval and, thus, the overall efficacy of PQ for malaria chemoprevention in this special population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.