Abstract

Programmed -1 ribosomal frameshifting (-1PRF) is tightly regulated by messenger RNA (mRNA) sequences and structures in expressing two or more proteins with precise ratios from a single mRNA. Using single-molecule fluorescence resonance energy transfer (smFRET) between (Cy5)EF-G and (Cy3)tRNALys, we studied the translational elongation dynamics of -1PRF in the Escherichia coli dnaX gene, which contains three frameshifting signals: a slippery sequence (A AAA AAG), a Shine-Dalgarno (SD) sequence and a downstream hairpin. The frameshift promoting signals mostly impair the EF-G-catalyzed translocation step of the two tRNALys and the slippery codons from the A- and P- sites. The hairpin acts as a road block slowing the translocation rate. The upstream SD sequence together with the hairpin promotes dissociation of futile EF-G and thus causes multiple EF-G driven translocation attempts. A slippery sequence also helps dissociation of the EF-G by providing alternative base-pairing options. These results indicate that frameshifting takes place during the repetitive ribosomal conformational changes associated with EF-G dissociation upon unsuccessful translocation attempts of the second slippage codon from the A- to the P- sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call