Abstract

Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

Highlights

  • The biological features of cyclooxygenases (COXs) and lipoxygenases (LOXs) have been extensively studied, as their eicosanoid products play central roles in inflammatory processes

  • To determine whether the 5-LO pathway is involved in oxidized low-density lipoprotein (ox-low-density lipoprotein (LDL))-induced endothelial inflammation, cultured rat pulmonary artery endothelial cells (RPAECs) were treated with ox-LDL (10–100 μg/mL)

  • We found that ox-LDL induced a marked elevation of intercellular adhesion molecule-1 (ICAM-1) and MCP-1/CCL2 expression and release in a concentration-dependent manner in RPAECs (Fig 1C and 1E)

Read more

Summary

Introduction

The biological features of cyclooxygenases (COXs) and lipoxygenases (LOXs) have been extensively studied, as their eicosanoid products play central roles in inflammatory processes. The LOX pathway is involved in the biosynthesis of hydroxyeicosatetraenoic acids (HETEs), lipoxins (LXs), and leukotrienes (LTs). These metabolites have been implicated in vasoregulatory and inflammatory events, such as asthma, allergic rhinitis, and atherosclerosis [1,2,3]. The 5-lipoxygenase (5-LO) pathway is responsible for the production of leukotriene B4 (LTB4) and cysteinyl LTs (cysLTs). LTB4 is an extremely potent chemoattractant that promotes the adhesion of neutrophils, macrophages and other inflammatory cells to the vascular endothelium, thereby increasing vascular permeability. Increased expression of 5-LO in pulmonary artery endothelial cells (PAECs) has been reported in disease states such as primary pulmonary hypertension [8], chronic hypoxia [9] and antigen challenge [10]. The mechanism remains unclear, the induction of 5-LO expression may reflect endothelial dysfunction in the pulmonary vasculature, which has been found to be associated with the above diseases

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call