Abstract

Background and ObjectiveAlthough existing artificial neural networks have achieved good results in electroencephalograph (EEG) emotion recognition, further improvements are needed in terms of bio-interpretability and robustness. In this research, we aim to develop a highly efficient and high-performance method for emotion recognition based on EEG. MethodsWe propose an Emo-EEGSpikeConvNet (EESCN), a novel emotion recognition method based on spiking neural network (SNN). It consists of a neuromorphic data generation module and a NeuroSpiking framework. The neuromorphic data generation module converts EEG data into 2D frame format as input to the NeuroSpiking framework, while the NeuroSpiking framework is used to extract spatio-temporal features of EEG for classification. ResultsEESCN achieves high emotion recognition accuracies on DEAP and SEED-IV datasets, ranging from 94.56% to 94.81% on DEAP and a mean accuracy of 79.65% on SEED-IV. Compared to existing SNN methods, EESCN significantly improves EEG emotion recognition performance. In addition, it also has the advantages of faster running speed and less memory footprint. ConclusionsEESCN has shown excellent performance and efficiency in EEG-based emotion recognition with potential for practical applications requiring portability and resource constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call