Abstract

There is an intimate connection between the electronic structure of a material and its physical properties. to change one, is to change the other. Some of the most striking illustrations of this relationship can be found at grain boundaries in metals and their alloys. Here, the most important changes in cohesion can be described by changes in the local density of states (LDOS), which in turn can be measured using EELS [1]. The first demonstration that EELS could be used to connect the electronic and mechanical properties of a material was in revealing the role that boron has in restoring a bulk-like bonding to grain boundaries in Ni3Al [2,3]. Boron was known to change the fracture mode in Ni3Al from intergranular to transgranular, possibly by enhancing grain boundary cohesion.What interested me in this project, when John Silcox first suggested it as a thesis topic, was the potential of using the EELS fine structure to measure materials properties directly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.