Abstract

It is well known that ocean acidification (OA) inhibits growth of marine calcifying organisms. Therefore, the adverse effects of acidification on marine ecosystems and aquaculture, such as oyster farming, are of concern. Since eelgrass beds in neritic areas have a high potential for carbon assimilation, this study focuses on local scale mitigation of OA effects. Using a three-dimensional lower-trophic system ecosystem model, we modeled nitrogen and carbon cycles, and the dynamics of carbonate parameters in a subarctic shallow lagoon and bay, where nitrogen availability limits the photosynthesis of primary producers. Simulation of the present conditions allowed reproduction of spatiotemporal variations in water quality and, by assuming future environmental changes quantitatively, revealed that the progress of OA significantly elevated the probability of shell malformation in juvenile oysters. The results represent the spatiotemporal variations in carbonate parameters inside and outside eelgrass beds and enable the evaluation of the alleviation effect on local acidification by the presence of a dense eelgrass bed. Our study shows that in the absence of the eelgrass bed scenario, the effect of OA on oysters became more remarkable. The simulations revealed that maintaining eelgrass beds is essential to mitigate the effects of acidification on oysters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.