Abstract
Background: Wireless sensor network is self-organizing which consists of a large number of sensor nodes and one sink node according to recent patents. The most important characteristics of such a network are the restricted resources like battery power, consumption capacity and consumption range. Energy consumption is one of the important issues in the wireless sensor network and the challenge is to prolong the network lifespan. Objective: The objective of the proposed approach is to balance a consumption of energy at member node as well as head node of cluster during the data transmission stage and to improve energy efficiency and lifespan of the network. Methods: The aim of an energy efficient clustering method to deal with the homogenous distribution and deployment of tree structure is performed. The performance of network is enhanced by electing head node with data to the node with greater cluster rate and having lowest distance from sink node. The member node sends their data to the head node which forwards their data to the node with greater weight rate which is sent to the sink node in an energy balancing way. Results: A performance analysis of existing approach as LEACH and proposed approach as EELEACH is undertaken by considering different metrics such as energy consumption successful data delivery, throughput, routing overhead, packet delivery fraction and delay ratio. Conclusion: From result analysis, the proposed system as EELEACH shows successful data delivery, throughput, routing overhead, packet delivery fraction and delay ratio. Hence, the low energy consumption improved lifespan of the network and better data transfer rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.