Abstract

<p><span>Improving the network lifetime is still a vital challenge because most wireless sensor networks (WSNs) run in an unreached environment, and offer almost impossible human access and tracking. Clustering is one of the most effective methods for ensuring that the relevant device process takes place to improve network scalability, decrease energy consumption and maintain an extended network lifetime. Many research have been developed on the numerous effective clustering algorithms to address this problem. Such algorithms almost dominate on the cluster head (CH) selection and cluster formation; using the intelligent type1 fuzzy-logic (T1-FL) scheme. In this paper, we suggest an interval type2 FL (IT2-FL) methodology that assumes uncertain levels of a decision to be more efficient than the T1-FL model. It is the so-called energy-efficient interval type2 fuzzy (EEIT2-F) low energy adaptive clustering hierarchical (LEACH) protocol. The IT2-FL system depends on three inputs of the residual energy of each node, the node distance from the base station (sink node), and the centrality of each node. Accordingly, the simulation results show that the suggested clustering protocol outperforms the other existing proposals in terms of energy consumption and network lifetime.</span></p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call