Abstract

Abstract—The aim of this study is to investigate the difference of EEG dynamics on navigation performance. A tunnel task was designed to classify subjects into allocentric or egocentric spatial representation users. Despite of the differences of mental spatial representation, behavioral performance in general were compatible between the two strategies subjects in the tunnel task. Task-related EEG dynamics in power changes were analyzed using independent component analysis (ICA), time-frequency and non-parametric statistic test. ERSP image results revealed navigation performance-predictive EEG activities which is is expressed in the parietal component by source reconstruction. For egocentric subjects, comparing to trails with well-estimation of homing angle, the power attenuation at the frequencies from 8 to 30 Hz (around alpha and beta band) was stronger when subjects overestimated homing directions, but the attenuated power was decreased when subjects were underestimated the homing angles. However, we did not found performance related brain activities for allocentric subjects, which may due to the functional dis-sociation between the use of allo- and egocentric reference frames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.