Abstract

This study examines the state and trait effects of short-term mindfulness-based stress reduction (MBSR) training using convolutional neural networks (CNN) based deep learning methods and traditional machine learning methods, including shallow and deep ConvNets as well as support vector machine (SVM) with features extracted from common spatial pattern (CSP) and filter bank CSP (FBCSP). We investigated the electroencephalogram (EEG) measurements of 11 novice MBSR practitioners (6 males, 5 females; mean age 35.7 years; 7 Asians and 4 Caucasians) during resting and meditation at early and late training stages. The classifiers are trained and evaluated using inter-subject, mix-subject, intra-subject, and subject-transfer classification strategies, each according to a specific application scenario. For MBSR state effect recognition, trait effect recognition using meditation EEG, and trait effect recognition using resting EEG, from shallow ConvNet classifier we get mix-subject/intra-subject classification accuracies superior to related previous studies for both novice and expert meditators with a variety of meditation types including yoga, Tibetan, and mindfulness, whereas from FBSCP + SVM classifier we get inter-subject classification accuracies of 68.50, 85.00, and 78.96%, respectively. Deep learning is superior for state effect recognition of novice meditators and slightly inferior but still comparable for both state and trait effects recognition of expert meditators when compared to the literatures. This study supports previous findings that short-term meditation training has EEG-recognizable state and trait effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.