Abstract

Electroencephalography (EEG) has long been used to index brain states, from early studies describing activity in the presence and absence of visual stimulation to modern work employing complex perceptual tasks. These studies have shed light on brain-wide signals but often lack explanatory power at the single neuron level. Similarly, single neuron recordings can suffer from an inability to measure brain-wide signals accessible using EEG. Here, we combined these techniques while monkeys performed a change detection task and discovered a novel link between spontaneous EEG activity and a neural signal embedded in the spiking responses of neuronal populations. This "slow drift" was associated with fluctuations in the subjects' arousal levels over time: decreases in prestimulus α power were accompanied by increases in pupil size and decreases in microsaccade rate. These results show that brain-wide EEG signals can be used to index modes of activity present in single neuron recordings, that in turn reflect global changes in brain state that influence perception and behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.