Abstract

Electroencephalograph is an electrical field that produced by our brain without any interrupt. In this paper, I & II-order derivatives of the Magnitude Response Functions are proposed for EEG signal Enhancement. By using this concept the random noise existing in the Electroencephalograph (EEG) signals can be reduced. A simulated model is discussed to mix the random noise of varying frequency & magnitude with the EEG signals and finally remove the noise signal using I & II-order derivatives of the Magnitude Response Functions filtering approach. The model can be used as estimation and get rid of the tool of random as well as artifacts in EEG signal from multiple origins. This work also shows the magnitude spectrum and comparing with FT magnitude spectrum. The filter characteristics are determined on the basis of parameters such as Mean Square Error (RMSE), SNR, PSNR, Mean Absolute Error (MAE) & Normalized Correlation coefficient (NCC) and a good improvement is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.