Abstract
PurposeThe main aim of this paper is to design a technique for improving the quality of EEG signal by removing artefacts which is obtained during acquisition. Initially, pre-processing is done on EEG signal for quality improvement. Then, by using wavelet transform (WT) feature extraction is done. The artefacts present in the EEG are removed using deep convLSTM. This deep convLSTM is trained by proposed fractional calculus based flower pollination optimisation algorithm.Design/methodology/approachNowadays' EEG signals play vital role in the field of neurophysiologic research. Brain activities of human can be analysed by using EEG signals. These signals are frequently affected by noise during acquisition and other external disturbances, which lead to degrade the signal quality. Denoising of EEG signals is necessary for the effective usage of signals in any application. This paper proposes a new technique named as flower pollination fractional calculus optimisation (FPFCO) algorithm for the removal of artefacts from EEG signal through deep learning scheme. FPFCO algorithm is the integration of flower pollination optimisation and fractional calculus which takes the advantages of both the flower pollination optimisation and fractional calculus which is used to train the deep convLSTM. The existed FPO algorithm is used for solution update through global and local pollinations. In this case, the fractional calculus (FC) method attempts to include the past solution by including the second order derivative. As a result, the suggested FPFCO algorithm approaches the best solution faster than the existing flower pollination optimization (FPO) method. Initially, 5 EEG signals are contaminated by artefacts such as EMG, EOG, EEG and random noise. These contaminated EEG signals are pre-processed to remove baseline and power line noises. Further, feature extraction is done by using WT and extracted features are applied to deep convLSTM, which is trained by proposed fractional calculus based flower pollination optimisation algorithm. FPFCO is used for the effective removal of artefacts from EEG signal. The proposed technique is compared with existing techniques in terms of SNR and MSE.FindingsThe proposed technique is compared with existing techniques in terms of SNR, RMSE and MSE.Originality/value100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Intelligent Computing and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.