Abstract

In this study, linear and nonlinear electroencephalogram (EEG) changes due to long-term audio–visual stimulation (AVS) were investigated. In the course of 2 months, 25 repetitions of a 20-min AVS program with stimulation frequencies in the range 2–18 Hz were applied to six healthy volunteers. EEG data were recorded from six head locations during relaxed wakefulness prior to AVS. Then linear spectral measures (total power, frequency band powers, spectral edge frequency, and spectral entropy), nonlinear measures of complexity (histogram-based entropy and correlation dimension), interdependency measures (linear correlation coefficient, mutual information, and coherence), and measures of subjective assessment were estimated. Evolution of these measures during the whole experiment period was analyzed with respect to the significance of their linear regression. Our results confirm that repetitive training with audio–visual stimulation does induce changes in the electro-cortical activity of the brain. Long-term AVS significantly increased power in theta-1, theta-2, and alpha-1 bands in the frontal and central cortex locations. Total power increased in the right central region. Interhemispheric coherence in alpha-1 band displayed a significant increase between frontal parts in contrast to the decrease of both linear correlation and mutual information. Correlation dimension significantly decreased in some locations while entropy displayed an ascending trend.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.