Abstract

Oscillations are pervasive in encephalographic signals and supposedly reflect cognitive processes and sensory representations. While the relation between oscillation amplitude (power) and sensory-cognitive variables has been extensively studied, recent work reveals that the dynamic oscillation signature (phase pattern) can carry information about such processes to a greater degree than amplitude. To elucidate the neural correlates of oscillatory phase patterns, we compared the stimulus selectivity of neural firing rates and auditory-driven electroencephalogram (EEG) oscillations. We employed the same naturalistic sound stimuli in 2 experiments, one recording scalp EEGs in humans and one recording intracortical local field potentials (LFPs) and single neurons in macaque auditory cortex. Using stimulus decoding techniques, we show that stimulus selective firing patterns imprint on the phase rather than the amplitude of slow (theta band) oscillations in LFPs and EEG. In particular, we find that stimuli which can be discriminated by firing rates can also be discriminated by phase patterns but not by oscillation amplitude and that stimulus-specific phase patterns also persist in the absence of increases of oscillation power. These findings support a neural basis for stimulus selective and entrained EEG phase patterns and reveal a level of interrelation between encephalographic signals and neural firing beyond simple amplitude covariations in both signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.