Abstract

Correct detection of peaks in electroencephalogram (EEG) signals is of essence due to the significant correlation of those potentials with cognitive performance and disorders. This paper proposes a novel and non-parametric approach to detect prediction error negativity (PEN) in cognitive conflict processing. The PEN candidates are first located from the input signal via an adaptation of a recent effective method for local maxima extraction, processed in a multi-scale manner. The found candidates are then fused and ranked based on their shape and location-based features. False positives caused by candidates' magnitude are eliminated by rotating the sorted candidate list where the one with the second-best ranking score will be identified as PEN. The EEG data collected from a 3D object selection task have been used to verify the efficacy of the proposed approach. Compared with the state-of-the-art peak detection techniques, the proposed method shows an improvement of at least 2.67% in accuracy and 6.27% in sensitivity while requires only about 4 ms to process an epoch. The accuracy and computational efficiency of the proposed technique in the detection of PEN in cognitive conflict processing would lead to promising applications in performance improvement of brain-computer interfaces (BCIs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.