Abstract
Classification of electroencephalogram-based motor imagery (MI-EEG) tasks raises a big challenge in the design and development of brain-computer interfaces (BCIs). In view of the characteristics of nonstationarity, time-variability, and individual diversity of EEG signals, a deep learning framework termed SSD-SE-convolutional neural network (CNN) is proposed for MI-EEG classification. The framework consists of three parts: 1) the sparse spectrotemporal decomposition (SSD) algorithm is proposed for feature extraction, overcoming the drawbacks of conventional time-frequency analysis methods and enhancing the robustness to noise; 2) a CNN is constructed to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and kappa value; and 3) the squeeze-and-excitation (SE) blocks are adopted to adaptively recalibrate channelwise feature responses, which further improves the overall performance and offers a compelling classification solution for MI-EEG applications. Experimental results on two datasets reveal that the proposed framework outperforms state-of-the-art methods in terms of both classification quality and robustness. The advantages of SSD-SE-CNN include high accuracy, high efficiency, and robustness to cross-trial and cross-session variations, making it an ideal candidate for long-term MI-EEG applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.