Abstract
ABSTRACT Background: Based on our Phantom study on transcranial direct current stimulation (tDCS), we hypothesized that EEG band power and field confinement would be greater following left dorsolateral prefrontal cortex (DLPFC – F3) tDCS using circular vs. rectangular electrodes. Methods: Double-blind-randomized trial comparing tDCS with anode over left DLPFC (groups: rectangular electrodes, circular electrodes, sham) and 2 active subgroup references (right shoulder vs. right DLPFC). Results: Twenty-four randomized participants were assessed. We indeed found higher average EEG power spectral density (PSD) across bands for circular vs. rectangular electrodes, largely confined to F3 and there was a significant increase at AF3 for low alpha (p = 0.037). Significant differences included: increased PSD in low beta (p = 0.024) and theta bands (p = 0.021) at F3, and in theta (p = 0.036) at FC5 for the right DLPFC vs. shoulder with no coherence changes. We found PSD differences between active vs. sham tDCS at Fz for alpha (p = 0.043), delta (p = 0.036), high delta (p = 0.030); and at FC1 for alpha (p = 0.031), with coherence differences for F3-Fz in beta (p = 0.044), theta (p = 0.044), delta (p = 0.037) and high delta (p = 0.009). Conclusion: This pilot study despite low statistical power given its small sample size shows that active left DLPFC tDCS modulates EEG frontocentrally and suggests that electrode shapes/reference locations affect its neurophysiological effects, such as increased low alpha power at AF3 using circular vs. rectangular electrodes. Further research with more participants is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.