Abstract

In recent years, deep-learning models gained attention for electroencephalography (EEG) classification tasks due to their excellent performance and ability to extract complex features from raw data. In particular, convolutional neural networks (CNN) showed adequate results in brain-computer interfaces (BCI) based on different control signals, including event-related potentials (ERP). In this study, we propose a novel CNN, called EEG-Inception, that improves the accuracy and calibration time of assistive ERP-based BCIs. To the best of our knowledge, EEG-Inception is the first model to integrate Inception modules for ERP detection, which combined efficiently with other structures in a light architecture, improved the performance of our approach. The model was validated in a population of 73 subjects, of which 31 present motor disabilities. Results show that EEG-Inception outperforms 5 previous approaches, yielding significant improvements for command decoding accuracy up to 16.0%, 10.7%, 7.2%, 5.7% and 5.1% in comparison to rLDA, xDAWN + Riemannian geometry, CNN-BLSTM, DeepConvNet and EEGNet, respectively. Moreover, EEG-Inception requires very few calibration trials to achieve state-of-the-art performances taking advantage of a novel training strategy that combines cross-subject transfer learning and fine-tuning to increase the feasibility of this approach for practical use in assistive applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.