Abstract

Unrecognized spatial disorientation (SD) which is intimately linked with brain cognitive function is always a fatal issue for the safety of pilots. To explore its effects on human brain cognitive functions, electroencephalography (EEG) functional network analysis methods were adopted to examine topological changes in the connection of cognitive regions when experiencing unrecognized SD. Twelve male pilots participated in the study. They were subjected to a SD scene, namely visual rotation, which evoked unrecognized SD. For the main EEG frequency intervals, the phase lag index (PLI) and normalized mutual information (NMI) were calculated to quantify the EEG data. Then weighted connectivity networks were constructed and their properties were characterized in terms of an average clustering coefficient and global efficiency. A T-test was performed to compare PLI, NMI and network measures under unrecognized SD and non-SD conditions. It indicated a weak functional connectivity level in the theta band under unrecognized SD based on the significant decrease of mean values of PLI and NMI (p<0.05). Meanwhile, both the average clustering coefficient and global efficiency in the theta band reduced under the unrecognized SD condition. The decrease of the average clustering coefficient and global efficiency demonstrates a lack of small-world characteristics and a decline in processing efficiency of brain cognitive regions. All the experimental results show that unrecognized SD may have a negative effect on brain functional networks in the theta band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.