Abstract

This study investigated the possibility of using functional near infrared spectroscopy (fNIRS) during right- and left-hand motor imagery tasks to select an optimum set of electroencephalography (EEG) electrodes for a brain computer interface. fNIRS has better spatial resolution allowing areas of brain activity to more readily be identified. The ReliefF algorithm was used to identify the most reliable fNIRS channels. Then, EEG electrodes adjacent to those channels were selected for classification. This study used three different classifiers of linear and quadratic discriminant analyses, and support vector machine to examine the proposed method.Clinical Relevance- Reducing the number of sensors in a BCI makes the system more usable for patients with severe disabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call