Abstract
The high cost of acquiring training data in the field of emotion recognition based on electroencephalogram (EEG) is a problem, making it difficult to establish a high-precision model from EEG signals for emotion recognition tasks. Given the outstanding performance of generative adversarial networks (GANs) in data augmentation in recent years, this paper proposes a task-driven method based on CWGAN to generate high-quality artificial data. The generated data are represented as multi-channel EEG data differential entropy feature maps, and a task network (emotion classifier) is introduced to guide the generator during the adversarial training. The evaluation results show that the proposed method can generate artificial data with clearer classifications and distributions that are more similar to the real data, resulting in obvious improvements in EEG-based emotion recognition tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.