Abstract

The assistive, adaptive, and rehabilitative applications of EEG-based robot control and navigation are undergoing a major transformation in dimension as well as scope. Under the background of artificial intelligence, medical and nonmedical robots have rapidly developed and have gradually been applied to enhance the quality of people's lives. We focus on connecting the brain with a mobile home robot by translating brain signals to computer commands to build a brain-computer interface that may offer the promise of greatly enhancing the quality of life of disabled and able-bodied people by considerably improving their autonomy, mobility, and abilities. Several types of robots have been controlled using BCI systems to complete real-time simple and/or complicated tasks with high performances. In this paper, a new EEG-based intelligent teleoperation system was designed for a mobile wall-crawling cleaning robot. This robot uses crawler type instead of the traditional wheel type to be used for window or floor cleaning. For EEG-based system controlling the robot position to climb the wall and complete the tasks of cleaning, we extracted steady state visually evoked potential (SSVEP) from the collected electroencephalography (EEG) signal. The visual stimulation interface in the proposed SSVEP-based BCI was composed of four flicker pieces with different frequencies (e.g., 6 Hz, 7.5 Hz, 8.57 Hz, and 10 Hz). Seven subjects were able to smoothly control the movement directions of the cleaning robot by looking at the corresponding flicker using their brain activity. To solve the multiclass problem, thereby achieving the purpose of cleaning the wall within a short period, the canonical correlation analysis (CCA) classification algorithm had been used. Offline and online experiments were held to analyze/classify EEG signals and use them as real-time commands. The proposed system was efficient in the classification and control phases with an obtained accuracy of 89.92% and had an efficient response speed and timing with a bit rate of 22.23 bits/min. These results suggested that the proposed EEG-based clean robot system is promising for smart home control in terms of completing the tasks of cleaning the walls with efficiency, safety, and robustness.

Highlights

  • Lei Shao,1 Longyu Zhang,1 Abdelkader Nasreddine Belkacem,2 Yiming Zhang,1 Xiaoqi Chen,1 Ji Li,1 and Hongli Liu1

  • Brain-computer interface (BCI) technology intend to build an interface between the brain and any electrical/electronic device using electroencephalogram (EEG) which is a noninvasive technique for measuring electrical potentials from electrodes placed on the scalp produced by brain activity

  • The noninvasive brain-computer interface is less accurate than the invasive BCI, it is still relatively cheaper compared with all other techniques and everyone can accept it. ere are several paradigms to control machine or computer using our brain signal characteristics and the most popular ones are motor imagery [15, 16], P300 wave [17, 18], steady state visual evoked potentials (SSVEP) [19,20,21] for building practical brain-computer interface systems

Read more

Summary

Introduction

For EEG-based system controlling the robot position to climb the wall and complete the tasks of cleaning, we extracted steady state visually evoked potential (SSVEP) from the collected electroencephalography (EEG) signal. Noninvasive EEG-based BCIs are the most promising interface for space of applications for people with severe motor disabilities because of their noninvasiveness, low cost, practicality, portability, and being easy to use. Ere are several paradigms to control machine or computer using our brain signal characteristics and the most popular ones are motor imagery [15, 16], P300 wave [17, 18], steady state visual evoked potentials (SSVEP) [19,20,21] for building practical brain-computer interface systems. SSVEP induction means that when the human brain receives the stimulation of a fixed frequency scintillation block, an uninterrupted response related to the stimulation frequency will be generated in the visual cortex of the human brain. is SSVEP brain response is a very useful natural involuntary phenomenon which has been tested by researchers many times

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call