Abstract

In young adults, sleep is associated with important changes in cerebral connectivity during the first cycle of non-rapid eye movement (NREM) sleep. Our study aimed to evaluate how electroencephalography (EEG) connectivity during sleep differs between young and older individuals, and across the sleep cycles. We used imaginary coherence to estimate EEG connectivity during NREM and rapid eye movement (REM) sleep in 30 young (14 women; 20-30 years) and 29 older (18 women; 50-70 years) individuals. We also explored the association between coherence and cognitive measures. Older individuals showed lower EEG connectivity in stage N2 but higher connectivity in REM and stage N3 compared to the younger cohort. Age-related differences in N3 were driven by the first sleep cycle. EEG connectivity was lower in REM than N3, especially in younger individuals. Exploratory analyses, controlling for the effects of age, indicated that higher EEG connectivity in delta during N2 was associated with higher processing speed, whereas, during REM sleep, lower EEG connectivity in delta and sigma was associated with higher verbal memory performance and a higher global averaged intelligence quotient score. Our results indicated that age modifies sleep EEG connectivity but the direction and the magnitude of these effects differ between sleep stages and cycles. Results in N3 and REM point to a reduced ability of the older brains to disconnect as compared to the younger ones. Our results also support the notion that cerebral functional connectivity during sleep may be associated with cognitive functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call