Abstract

A novel technique for electroencephalogram (EEG) compression is proposed in this paper. This technique models the intrinsic dependence inherent between the different EEG channels. It is based on methods borrowed from dipole fitting that is usually used in order to find a solution to the classic problems in EEG analysis: inverse and forward problems. To compress the EEG signals, the forward model based on approximated source dipoles is first used to provide an approximation of the recorded signals. Then, (based on a smoothness factor) appropriate coding techniques are suggested to compress the residuals of the fitting process. Results show that this technique works well for different recordings and for different patients, and is even able to provide near-lossless compression for certain types of recordings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.