Abstract
Brain-computer interfaces (BCI) employ algorithmic procedures of machine learning in order to extract user-specific patterns of high-dimensional EEG features. These patterns are optimised to decode intention-related brain states in real-time. Characteristic BCI applications for paralysed patients are control of active prostheses or speller software. To recognise a user’s motor intention a BCI system utilises individual EEG activation indices, such as the readiness potential or the modulation of regional EEG rhythms. Also beyond the borders of rehabilitation, this neurotechnology enables a growing set of novel application scenarios, e. g., BCIs can serve as optimised feedback tools for the stabilisation of mental states such as vigilance or attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.