Abstract

One common type of vascular dementia (VaD) is poststroke dementia (PSD). Vascular dementia can occur in one-third of stroke patients. The worsening of cognitive function can occur quickly if not detected and treated early. One of the potential medical modalities for observing this disorder by considering costs and safety factors is electroencephalogram (EEG). It is thought that there are differences in the spectral dynamics of the EEG signal between the normal group and stroke patients with cognitive impairment so that it can be used in detection. Therefore, this study proposes an EEG signal characterization method using EEG spectral power complexity measurements to obtain features of poststroke patients with cognitive impairment and normal subjects. Working memory EEGs were collected and analyzed from forty-two participants, consisting of sixteen normal subjects, fifteen poststroke patients with mild cognitive impairment, and eleven poststroke patients with dementia. From the analysis results, it was found that there were differences in the dynamics of the power spectral in each group, where the spectral power of the cognitively impaired group was more regular than the normal group. Notably, (1) significant differences in spectral entropy (SpecEn) with a p value <0.05 were found for all electrodes, (2) there was a relationship between SpecEn values and the severity of dementia (SpecEnDem < SpecEnMCI < SpecEnNormal), and (3) a post hoc multiple comparison test showed significant differences between groups at the F7 electrode. This study shows that spectral complexity analysis can discriminate between normal and poststroke patients with cognitive impairment. For further studies, it is necessary to simulate performance validation so that the proposed approach can be used in the early detection of poststroke dementia and monitoring the development of dementia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.