Abstract
Background and Objectives: Epilepsy is a clinical phenomenon caused by sudden abnormal and excessive discharge of brain neurons. It affects around 70 million people all over the world. Seizure detection from Electroencephalography (EEG) has achieved rapid development. However, existing methods often extract features from single channel EEG while ignoring the spatial relationship between different EEG channels. To fill this gap, a novel seizure detection model based on linear graph convolution network (LGCN) was proposed to enhance the feature embedding of raw EEG signals during seizure and non-seizure periods. Method: Pearson correlation matrix of raw EEG signals was calculated to build the input graph of the graph neural network where the coefficients of the matrix models the spatial relations in EEG signals. The last softmax layer makes the final decision (seizure vs. non-seizure). In addition, focal loss was utilized to redefine the loss function of LGCN to deal with the data imbalance problem during seizure detection. Results: Experiments are conducted on the CHB-MIT dataset. The seizure detection accuracy, specificity, sensitivity, F1 and Auc are 99.30%, 98.82%, 99.43%, 98.73% and 98.57% respectively. Conclusions: The proposed approach yields superior performance over the-state-of-the-art in seizure detection tasks on the CHB-MIT dataset. Our method works in an end-to-end manner and it does not need manually designed features. The ability to deal with imbalanced data is also attractive in real seizure detection scenarios where the duration of seizures is much shorter than the lasting time of non-seizure events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.