Abstract

Using biometric modalities for person recognition is crucial to guard against impostor attacks. Commonly used biometric modalities, such as fingerprint scanners and facial recognition, are effective but can easily be tampered with and deceived. These drawbacks have recently motivated the use of electroencephalography (EEG) as a biometric modality for developing a recognition system with a high level of security. The majority of existing EEG-based recognition methods leverage EEG signals measured either from many channels or over a long temporal window. Both set limits on their usability as part of real-life security systems. Moreover, nearly all available methods use hand-engineered techniques and do not generalize well to unknown data. The few EEG-based recognition methods based on deep learning suffer from an overfitting problem, and a large number of model parameters must be learned from only a small amount of available EEG data. Leveraging recent developments in deep learning, this study addresses these issues and introduces a lightweight convolutional neural network (CNN) model consisting of a small number of learnable parameters that enable the training and evaluation of the CNN model on a small amount of available EEG data. We present a robust and efficient EEG-based recognition system using this CNN model. The system was validated on a public domain benchmark dataset and achieved a rank-1 identification result of 99% and an equal error rate of authentication performance of 0.187%. The system requires only two EEG channels and a signal measured over a short temporal window of 5 s. Consequently, this method can be used in real-life settings to identify or authenticate biometric security systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call