Abstract

Abstract Augmented reality (AR) technologies enhance a user’s physical environment by providing contextual information about their surroundings. This information might appear incongruent to users, either due to their current mental context or factual errors in the data. This paper explores the feasibility of incongruency decoding using electroencephalographic (EEG) signals from 19 participants acquired during an interactive AR task. Previous studies on single-trial N400 decoding for brain-computer interfaces using EEG data are limited. Therefore, we implemented commonly used classification approaches and assessed their decoding performance compared to the convolutional neural network EEGNet. We found that the investigated approaches offer comparable accuracies ranging from 63.3% to 64.8%. Successful decoding of incongruency effects can foster more contextually appropriate interactions within AR environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.