Abstract

Dual-task training under variable-priority instructions (DT-VP), during which subjects are required to vary their focus of attention (FOA) between two concurrent tasks, has shown a more significant improvement in neural rehabilitation than that under fixed-priority instructions. Failed FOA switching not only diminishes the recovery benefits, but also causes anxieties, which is detrimental to rehabilitation. Developing a strategy for tracking and regulating patients' FOA to achieve a better performance in task priority-following during DT-VP is thus imperative. In this study, fifteen stroke patients participated in DT-VP that comprised two tasks: a mathematical problem-solving task and a cycling task, during which their electroencephalograms were recorded simultaneously. The significantly differentiated power spectra of four brain regions extracted from single-task training were fed into a support vector machine to build a FOA tracking algorithm for patients' attention assessment during the DT-VP. Moreover, dual-task difficulty adaptation method was designed to regulate patients' FOA when their FOA and the high-priority task were not coincident. The comparison experimental results showed that the proposed method significantly improved patients' FOA distributed on the high-priority task (analysis of variance, 0.05). Meanwhile, the absolute power spectral densities of the motor cortex and the frontal region could also be improved during DT-VP under high motor and cognitive task priority instructions, respectively. These phenomena demonstrated the feasibility of the proposed method in helping stroke patients better implement FOA switching and maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call