Abstract
Background: Attention deficit hyperactivity disorder (ADHD) is prevalent worldwide, affecting approximately 8-12% of children. Early detection and effective treatment of ADHD are crucial for improving academic, social, and emotional outcomes. Despite numerous studies on ADHD detection, existing models still lack accuracy distinguishing between ADHD and healthy control (HC) children. Methods: This study introduces an innovative methodology that utilizes granger causality (GC), a well-established brain connectivity analysis technique, to reduce the required EEG electrodes. We computed GC indexes (GCI) for the entire brain and specific brain regions, known as regional GCI, across different frequency bands. Subsequently, these GCIs were transformed into color-coded images and fed into a custom-developed 11-layer convolutional neural network. Results: The proposed model is evaluated through a five-fold cross-validation, achieving the highest accuracy of 99.80% in the gamma frequency band for the entire brain and an accuracy of 98.50% in distinguishing the theta frequency band of the right hemisphere of ADHD and HC children by only using eight electrodes. Conclusion: The proposed framework provides a powerful automated tool for accurately classifying ADHD and HC children. The study’s outcome demonstrates that the innovative proposed methodology utilizing GCI and a custom-developed convolutional neural network can significantly improve ADHD detection accuracy, improving affected children’s overall quality of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.